
When in Doubt Throw It Out: Building on Confident
Learning for Vulnerability Detection

Authors:
Yuanjun Gong, Renmin University of China (China)
Fabio Massacci, University of Trento (Italy),Vrije Universiteit Amsterdam (The Netherlands)

This work has been partly supported by the European Union (EU) under Horizon Europe grant n . 101120393 (Sec4AI4Sec),
by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) under grant n. KIC1.VE01.20.004 (HEWSTI), and
by the Italian Ministry of University and Research (MUR), under the P.N.R.R. – NextGenerationEU grant n. PE00000014
(SERICS). This paper reflects only the author’s view and the funders are not responsible for any use that may be made of the
information contained therein.

This is the author accepted version of Gong, Y.J. and Massacci, F. When in Doubt Throw It Out: Building on Confident
Learning for Vulnerability Detection. Proceedings of the International Conference on Software Engineering - New and Emerging
Results (ICSE-NIER 2025). IEEE Press.

MaxLumi



Cybersecurity for AI-Augmented Systems (Sec4AI4Sec) . As artificial intelligence (AI) becomes omnipresent, even integrated
within secure software development, the safety of digital infrastructures requires new technologies and new methodologies, as
highlighted in the EU Strategic Plan 2021-2024. To achieve this goal, the EU-funded Sec4AI4Sec project will develop advanced
security-by-design testing and assurance techniques tailored for AI-augmented systems. These systems can democratise security

expertise, enabling intelligent, automated secure coding and testing while simultaneously lowering development costs and improving software quality. However,
they also introduce unique security challenges, particularly concerning fairness and explainability. Sec4AI4Sec is at the forefront of the move to tackle these
challenges with a comprehensive approach, embodying the vision of better security for AI and better AI for security. More information at https://sec4ai4sec.eu.

Hybrid Explainable Workflows for Security and Threat Intelligence (HEWSTI) In research into threats to safety and security,
people and AI collaborate to obtain actionable intelligence. Their sources and methods often have significant uncertainties and biases.
Experts are aware of these limitations, but lack the formal means to handle these uncertainties in their daily work. This project will
invent a ‘metadata of uncertainty’ for threat intelligence (in both machine-readable and also human-interpretable forms) and validate
it empirically. Intelligence agencies will then be able to explicitly consider the trade-off between the accuracy, proportionality, privacy,

and cost-effectiveness of investigations. This will contribute towards the responsible use of AI to create a safer, more secure society.

In searCh Of eVidence of stEalth cybeR Threats (COVERT) AT 3 aims to analyze emerging attack methodologies and develop
advanced methods for detecting attacks and identifying guidelines for designing IT systems that ensure reduced vulnerability to
new attack categories. The detailed objectives can be divided into four macro categories: (i) Development of advanced tools for
analyzing malware and software aimed at identifying vulnerabilities that could be exploited by malware; (ii) Development of tools
for analyzing network traffic to identify communications related to ongoing attacks; (iii) Development of machine learning systems
that are robust to attacks and through which it is possible to extract knowledge aimed at creating more advanced tools for timely
analysis and early identification of attacks; (iv) Analysis of the ”human factors” involved in an attack with the development of tools

for analyzing and correlating information from OSINT (open sources intelligence) and for the defense and prevention of attacks based on social engineering
techniques.

Yuanjun Gong (BSc 2018) is PhD candidate at the Renmin University of China, Beijing, China. Her research interests include static analysis,
software security and machine learning. Contact her at gongyuanjun@ruc.edu.cn.

Fabio Massacci (Phd 1997) is a professor at the University of Trento, Italy, and Vrije Universiteit Amsterdam, Fabio Massacci is a professor at
the University of Trento, Trento, Italy, and Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands. His research interests include
empirical methods for the cybersecurity of sociotechnical systems. For his work on security and trust in sociotechnical systems, he received
the Ten Year Most Influential Paper Award at the 2015 IEEE International Requirements Engineering Conference. He is named co-author of
CVSS v4. He leads the Horizon Europe Sec4AI4Sec project and the Dutch National Project HEWSTI. He is past chair of the Security and

Defense Group of the Society for Risk Analysis, and IEEE CertifAIEd Lead Assessor. Contact him at fabio.massacci@ieee.org.

How to cite this paper:
• Gong, Y.J. and Massacci, F. When in Doubt Throw It Out: Building on Confident Learning for Vulnerability Detection.

Proceedings of the International Conference on Software Engineering - New and Emerging Results (ICSE-NIER 2025).
IEEE Press.

License:
• This article is made available with a perpetual, non-exclusive, non-commercial license to distribute.

https://sec4ai4sec.eu


When in Doubt Throw It Out: Building on
Confident Learning for Vulnerability Detection

Yuanjun Gong
Renmin University of China, Beijing, CN

gongyuanjun@ruc.edu.cn

Fabio Massacci
University of Trento, IT and Vrije Universiteit Amsterdam, NL

fabio.massacci@ieee.org

Abstract—[Context:] Confident learning’s intuition is that
a good model can be used to identify mislabelled data. By
swapping mislabeled samples that are not confidently predicted,
the performance of model can be further improved. [Prob-
lem:] Unfortunately, vulnerability detectors are generally under-
performing models and confidence learning would conclude that
the bulk of the dataset is mislabelled. [New Idea:] We extend
confidence learning by identifying a type of training samples
that appear in presence of under-performing models: confusing
samples. [Emerging Result:] We analyze the formal constraints
for confusing samples and perform preliminary experiments that
show that the model’s performance is effectively improved after
deleting confusing samples entirely from the training set.

Index Terms—Vulnerability Detection, Confident Learning,
Confusing Samples

I. INTRODUCTION

Confident learning [1] (CL for short) has been proposed
as a method for identifying the latent true labels of dataset
samples, by bootstrapping the performance of a good model
on the dataset itself. The key idea is that the label confidently
predicted by a reliable model could be right and the given
label could be wrong. By changing labels during training we
could improve the performance of the model. CL assumes that
the model is reasonably good to start with.

Unfortunately, vulnerability detection models don’t perform
well. When Wen et al. [2] compared seven vulnerability
detectors on three dataset: FFMPeg+Qemu [3], Reveal [4],
and Fan et al. [5], the precision of the models was rarely
above 50% (Table I). Even LineVul, which is one of the
most accurate, recent detector doesn’t systematically performs
well [6]. Datasets are noisy as well and up of two third of
vulnerability labels are wrong in many so called ’real-world’
datasets [7]. If dataset are noisy at this level, then even a good
detector such as LineVul [8] can hardly be a good detector
since it is good at predicting wrong values. If models and
datasets are so bad, how would confidence learning fare?

Only Nie et al. [13] have used confident learning on
CWE-specific vulnerability detection datasets and shown some
improvement but this result is not confirmed by independent
experiments. When we applied by-the-book CL strategies to
under-performing models, between 28%-38% of the training
set would be identified as Mislabeled samples (Table III). This
would call into question either the nature of datasets argued to

This work was done when the first author was a visiting Ph.D. student at
The University of Trento.

TABLE I
VULNERABILITY DETECTION PERFORMANCE OF VARIOUS ML TOOLS [2]

Dataset FFMPeg+Qemu Reveal Fan et al.
Tools P R P R P R
VulDeePecker [9] 46.05 32.55 21.13 13.10 38.44 12.75
Russell et al. [10] 54.76 40.72 16.21 52.68 14.86 26.97
SySeVR [11] 46.06 58.81 40.07 24.94 30.91 14.08
Devign [3] 52.50 64.67 31.55 36.65 30.61 15.96
Reveal [12] 55.50 70.70 31.55 61.14 17.22 34.04
IVDetect [4] 52.37 57.55 - - - -
AMPLE [2] 55.64 83.99 51.06 46.15 29.98 34.58

provide a reliable ground truth based on developers’ actions
or the very idea behind confidence learning.

To debug this unsatisfactory conflict, we studied the dis-
tribution of samples’ prediction, the confident thresholds, and
all possible formal combinations of out-of-sample predicted
probabilities of a (poor) model’s training set and we have
identified an alternative approach.

Intuitively, if a model is poor and labels aren’t good either,
there can be samples where we can’t find a clear indication
on whether the model’s prediction is wrong or the sample is
mislabeled. So, better to throw those samples out.

• We identify two types of training samples where the label
with the highest prediction probability is not a confident
prediction. We name them Confusing samples.

• We identified the necessary and sufficient conditions for
Confusing samples to exist.

• Our preliminary experiments shows that by deleting
Confusing samples from the training set, the model’s
performance on the testing set is effectively improved.
In one case, even better than relabelling or pruning
mislabeled samples as suggested by the CL algorithm.

These samples only materialize when the model is under-
performing (as vulnerability detection models are), and there-
fore works on CL for images have rarely witnessed them.

II. BACKGROUND ON CONFIDENT LEARNING

CL initially applies K-fold cross validation on the training
set to obtain the out-of-sample prediction pred(k, ℓ) for each
sample k on class ℓ. The function label(k, ℓ) = 1 if the given
label of sample k is ℓ and zero otherwise. We denote a label
that is different from the label ℓ as ℓ∗. Then, CL calculates



TABLE II
THE POSSIBLE SITUATION OF THE PREDICTIONS

ID Confidence in ℓ Confidence in ℓ∗ better prediction
1 pred(k, ℓ) > tℓ pred(k, ℓ∗) > tℓ∗ pred(k, ℓ) > pred(k, ℓ∗)
2 pred(k, ℓ) > tℓ pred(k, ℓ∗) > tℓ∗ pred(k, ℓ) < pred(k, ℓ∗)
3 pred(k, ℓ) > tℓ pred(k, ℓ∗) < tℓ∗ pred(k, ℓ) > pred(k, ℓ∗)
4 pred(k, ℓ) > tℓ pred(k, ℓ∗) < tℓ∗ pred(k, ℓ) < pred(k, ℓ∗)
5 pred(k, ℓ) < tℓ pred(k, ℓ∗) > tℓ∗ pred(k, ℓ) > pred(k, ℓ∗)
6 pred(k, ℓ) < tℓ pred(k, ℓ∗) > tℓ∗ pred(k, ℓ) < pred(k, ℓ∗)
7 pred(k, ℓ) < tℓ pred(k, ℓ∗) < tℓ∗ pred(k, ℓ) > pred(k, ℓ∗)
8 pred(k, ℓ) < tℓ pred(k, ℓ∗) < tℓ∗ pred(k, ℓ) < pred(k, ℓ∗)

the confident threshold tℓ for each class as the average of the
model’s predicted probability for samples with given label ℓ.

tℓ =
1∑

k label(k, ℓ)

∑
k
pred(k, ℓ) · label(k, ℓ) (1)

CL assumes that a predicted label is valid only if the
prediction is confident, i.e. the prediction on label ℓ should be
greater than the confident threshold tℓ. The latent true label
of sample k is assumed by CL to be

trueLabel(k) = argmaxℓ{pred(k, ℓ) | pred(k, ℓ) > tℓ} (2)

CL pruning strategies relabel the database according to the
confident joint or the joint distribution between the given
labels and the true labels. For example, given label(k, ℓ) = 1
and label(k, ℓ∗) = 0, the Off-Diagonals CL Strategy decides
whether the sample k is Mislabeled following Eq. 3 below

mislabel(k, ℓ) =


1 if ∃ℓ∗ ̸= ℓ : label(k, ℓ) = 1∧

pred(k, ℓ∗) > tℓ∗ ∧
pred(k, ℓ∗) > pred(k, ℓ)

0 otherwise

(3)

III. IDENTIFYING Confusing SAMPLES

To simplify the presentation, we only focus on the vulner-
ability detection scenario with a binary classifier. For each
sample k, the prediction for its given class pred(k, ℓ) can be
either greater or less than the confident threshold tℓ. Likewise,
the predicted probability of the wrong label pred(k, ℓ∗) can
be greater or less than tℓ∗ , and the predict result is one of the
two. In Table II we list all the possible situations a sample can
belong to (we omit the case of exact equivalence since values
come from floating-point operations on tensors).

• Samples in situation #1 and #3 are predicted with high
confidence, therefore they are neither Mislabeled samples
nor Confusing samples.

• Samples #2 and #6 are Mislabeled according to CL,
because the predicted probability pred(k, ℓ∗) for the
wrong label ℓ∗ is greater than tℓ∗ (a better than average,
i.e. confident prediction) and greater than pred(k, ℓ). So,
we are confident of the prediction of the sample, which
just has a ‘wrongly given’ label.

• Sample #7 is not considered as Mislabeled sample by CL
because it has low confidence predictions.

• Sample #5 would be attributed to ℓ∗ by CL, because
pred(k, ℓ∗) is higher than the threshold tℓ∗ , even if ℓ is a

better prediction. This is a type of Confusing samples. We
denote it as GIVENWINSCONFIDENTALTERNAT sample.

• Samples #4 and #8 are not Mislabeled samples according
to CL, since the prediction on ℓ∗ is not confident, but
wrong prediction si still wrong, so we categorize them as
Confusing ssamples of type ALTERNATNOTCONFIDENT-
YETWINS.

A. Capturing GIVENWINSCONFIDENTALTERNAT samples

A Confusing sample k is GIVENWINSCONFIDENT-
ALTERNAT if

tℓ > pred(k, ℓ) > pred(k, ℓ∗) > tℓ∗ (4)

Necessary Conditions. Assume label(k, ℓ) = 1. Let Nℓ be the
number of samples such that label(k, ℓ) = 1 for all samples
k = 1 . . . N . We use PrT (ℓ

∗), to denote the average predicted
probability of the True Negative samples towards label ℓ.
Likewise, PrT (ℓ), PrF (ℓ), PrF (ℓ

∗) represent for the average
predicted probability of the True Positive samples, the False
Negative samples, and the False Positive samples, accordingly.

Since pred(k, ℓ) + pred(k, ℓ∗) = 1, we need to make sure
tℓ∗ < 1

2 and tℓ >
1
2 to get Confusing samples.

Denoting the true positive rate (recall) of the model for label
ℓ as TPRℓ, we have TPRℓ · Nℓ samples having a correct
prediction with average predicted probability PrT (ℓ) > 1

2 .
Similarly, (1 − TPRℓ)Nℓ samples have a wrong prediction
with average predicted probability as PrF (ℓ) <

1
2 .

The confident threshold tℓ can be calculated as

tℓ = TPRℓ · PrT (ℓ) + (1− TPRℓ) · PrF (ℓ)} (5)

Since tℓ should be grater than 1
2 , we get

TPRℓ >
1
2 − PrF (ℓ)

PrT (ℓ)− PrF (ℓ)
(6)

Similarly, we get the constraint for False Positive
Rate(FPRℓ) from tℓ∗ < 1

2 as

FPRℓ >
PrT (ℓ

∗)− 1
2

PrT (ℓ∗)− PrF (ℓ∗)
(7)

Eq. 6 and Eq. 7 are the necessary conditions for GIVEN-
WINSCONFIDENTALTERNAT samples.
When a model works well on positive reports but less well on
negative reports, Confusing samples can be in the dataset.

Sufficient Conditions. Given tℓ >
1
2 and tℓ∗ < 1

2 , for GIVEN-
WINSCONFIDENTALTERNAT samples not to exist we need

∀k,¬(tℓ > pred(k, ℓ) ∨ pred(k, ℓ) > pred(k, ℓ∗)

∨ pred(k, ℓ∗) > tℓ∗)
(8)

By reasoning by cases there will be no GIVENWINS-
CONFIDENTALTERNAT samples in the dataset if only the
following types of samples exist:

• Well-Predicted. pred(k, ℓ) > tℓ >
1
2

• Poorly-Predicted. pred(k, ℓ) ≤ 1
2

• Not-Bad-Predicted. 1
2 ≤ 1− tℓ∗ < pred(k, ℓ) < tℓ

4



0.5 𝑡!1 − 𝑡!∗
Well-Predicted SamplesConfusing

Samples

Poorly-Predicted
Samples

Not-Bad-
Predicted
Samples

𝑝𝑟𝑒𝑑(𝑘, 𝑙)

For example the vulnerable function qemu chr open socket in the QEMU
datatset has been scored 0.523 by our classifier,and the confidence
threshold for vulnerable samples is 0.682 and that for not vulnerable
samples is 0.476. So this function is correctly predicted but not confidently,
instead, the alternative prediction is confident.

Fig. 1. Sufficient Condition for GIVENWINSCONFIDENTALTERNAT

Figure 1 shows the relationship between the predicted
probability of the sample and its prediction category. The
sufficient constraint for GIVENWINSCONFIDENTALTERNAT
samples is ∃k, 1

2 < pred(k, ℓ) < 1− tℓ∗ .

B. Capturing ALTERNATNOTCONFIDENTYETWINS

The formal definition of ALTERNATNOTCONFIDENTYET-
WINS is the following one

tℓ∗ > pred(k, ℓ∗) > pred(k, ℓ) (9)

With a reasoning process similar to the other type we
conclude that the necessary condition for ALTERNATNOT-
CONFIDENTYETWINS samples is the following one:

FPRℓ <
PrT (ℓ

∗)− 1
2

PrT (ℓ∗)− PF (ℓ∗)
(10)

The sufficient conditions of the ALTERNATNOT-
CONFIDENTYETWINS samples is ∃k, 1

2 > pred(k, ℓ) >
1− tℓ∗ . The positions of samples are shown in Figure 2. The
condition that tℓ∗ < 1/2, used in the necessary condition for
the first type of samples, does not hold here because we have
pred(k, ℓ∗) > 1/2 and pred(k, ℓ∗) < tℓ∗ .

0.51 − 𝑡!∗

Confusing
Samples

Poorly-Predicted
Samples

Correctly-Predicted
Samples

𝑝𝑟𝑒𝑑(𝑘, 𝑙)

For example the non-vulnerable function sprintf len in the QEMU dataset
has been scored 0.439 by our classifier, and the confidence threshold for
vulnerable samples is 0.682. Therefore, this function is wrongly predicted
and none of the predictions is confident.

Fig. 2. Sufficient Condition for ALTERNATNOTCONFIDENTYETWINS

IV. EXPERIMENTS AND RESULTS

In this section, we use a pre-trained sentenceBERT [14]
encoder along with two activated linear layers to construct
a vulnerability detector that is comparable to the state-of-
the-art in Table I, but it is still not satisfactory (Precision
= 63%, Recall = 47%). We use 4,000 positive samples and
4,000 negative samples from Devign’s Qemu dataset [3] for
the training set, as well as 1,000 positive samples and 1,000
negative samples to form the testing set. Training with entire
dataset yields a precision of 63.35% and a recall of 47.7%.

TABLE III
THE CONFIDENT LEARNING RESULT OF THE TRAINING SET

ℓ = 0 ℓ = 1
Total Samples 4,000 (50.00%) 4,000 (50.00%)
CL Method Misclassified 2,265 (28.31%) 795 (9.93%)
CL Method Off-Diagonals 1,370 (17.14%) 795 (9.93%)
CL Method Prune-by-Class 1,708 (21.35%) 795 (9.93%)
CL Method Prune-by-Noise-Rate 1,708 (21.35%) 795 (9.93%)
CL Method Prune-by-Both 1,704 (21.30%) 795 (9.93%)

TABLE IV
THE PERFORMANCE AFTER PRUNING OR INVERTING MISLABELED

SAMPLES AND PRUNING CONFUSING SAMPLES

Dataset Samples
Influenced Precision Recall

Original Dataset 0 63.35 47.70
Remove Mislabeled 2,165 59.07 76.50
Invert Mislabeled 2,165 60.07 69.50
Rem. ALTERNATNOTCONFIDENTYETWINS 900 59.62 75.30
Rem. GIVENWINSCONFIDENTALTERNAT 94 59.25 77.20

The confidence thresholds are t0 = 0.476 and t1 = 0.682.
While pred(k, ℓ) + pred(k, ℓ) = 1, the two thresholds do not
necessarily sum to one. The values are comparable to Table I:
we have a worse recall but a better precision.

CL proposes five rules to process Mislabeled samples,
namely Misclassified, Off-Diagonals, Prune-by-Class, Prune-
by-Noise-Rate, and Prune-by-Both (See [1] for further details).

Intuitively, the only thing that changes are the fraction
of Mislabeled samples according to Eq. 3 that are changed.
Table III shows the number of mislabeled training samples
identified by the various pruning methods. Essentially more
than 1

3 of the dataset are wrongly labeled. This would call
into question the very nature of QEMU as a realiable dataset
allegedly based on actual, real world commits.

We analyze the out-of-sample predicted probabilities of
the training samples and identify the two types of confusing
samples with the aforementioned definition. A total of 900
ALTERNATNOTCONFIDENTYETWINS samples (10%) and
a total of 94 GIVENWINSCONFIDENTALTERNAT samples
(1%) are recognized. These amounts look an acceptable com-
promise. After removing the confusing samples from the train-
ing set, we retrain the model and test the model’s performance.
We also test the model after pruning the Mislabeled samples
identified by CL algorithm and after inverting the Mislabeled
samples labels according to the Off-Diagonals strategy.

The resulting precision and recall are shown in Table IV.
Removing confusing samples from the training set im-
proves the performance. In particular, removing GIVENWINS-
CONFIDENTALTERNAT samples has the least influence to the
training set, while getting better result on recall with no impact
on precision (60% to 59%).

To explore the composition of the training dataset (when
a sample is classified as a mislabeled sample and when it
is classified as a confusing sample), we further analysed
the training dataset in Figure 3. Figure. 3(a), respectively
Figure. 3(b), shows the model’s predicted probability on the
given label 0, respectively 1. Since the model’s confidence

5



0.0 0.2 0.4 0.6 0.8 1.0

(a) Predicted Probability (l = 0)
0

25

50

75

100

125

150

175

200

Sa
m

pl
e 

N
um

be
rs

Samples with no Issue
Mislabeled Samples
NotConfidentAlternativeWins Samples

0.0 0.2 0.4 0.6 0.8 1.0

(b) Predicted Probability (l = 1)
0

25

50

75

100

125

150

175

200

Samples with no Issue
Mislabeled Samples
GivenWinsConfidentAlternative Samples

Fig. 3. The Distribution of Mislabeled and Confusing Samples

thresholds are t0 < 0.5 and t1 > 0.5, in Figure. 3(a) where
ℓ = 0, only ALTERNATNOTCONFIDENTYETWINS samples
exist. In Figure. 3(b) where ℓ = 1, only GIVENWINS-
CONFIDENTALTERNAT samples exist. Confusing samples are
present when the model does not have high confidence in its
predictions for both categories. In comparison to Mislabeled
samples, Confusing samples make up a small fraction of the
total samples, and processing Confusing samples will be a less
invasive modification of the original dataset than changing the
alleged Mislabeled samples.

We further analyzed the distribution of out-of-sample pre-
dicted probabilities for the training set before and after prun-
ing. As shown in Figure 4(a), the improvement to the model
by pruning the GIVENWINSCONFIDENTALTERNAT samples
results in increasing the proportion of correct predictions
for the negative samples. The improvement to the model by
pruning the ALTERNATNOTCONFIDENTYETWINS samples
results in increasing the proportion of correct predictions for
the positive samples, as shown in Figure 4(b).

V. DISCUSSION AND FUTURE PLANS

In this paper, we discuss an alternative approach to confident
learning for vulnerability detection. If the model is poor, mis-
labeled samples identified by confident learning may become
too many for relabeling to be a sound approach. Our proposal
is to identify and delete Confusing samples. Our preliminary
experiments show that a model can gain performance after
pruning those samples from the training. While we have given
necessary and sufficient conditions for Confusing samples to
exist we have not proved that their removal always improves
the model. Such evidence requires more experimental analysis,
such as combining both mislabeled and confusing samples as
well as analyzing differences between them.

Real-World Vulnerability Detection. We plan to apply the
Confusing sample pruning strategy to more datasets with real-
world vulnerabilities and a variety of vulnerability detection
models, to test whether the phenomenon reported here is
widespread, and whether the performance of state-of-the-art
detectors is always improved. Among the various models,
LineVul [8] has emerged as one the most promising and its
evaluation could lead to useful insights.

Unbalanced Training Set. We used a balanced training
set with equal positive and negative samples. Real-world vul-
nerability datasets have unbalanced samples, e.g., Reveal [4],

0.0 0.2 0.4 0.6 0.8 1.0

(a) Predicted Probability (l = 0)
0.00

0.02

0.04

0.06

0.08

0.10

Sa
m

pl
e 

Pr
op

or
tio

ns

l=0 Samples before Pruning 
l=0 Samples after Pruning GivenWinsConfidentAlternative
l=0 Samples after Pruning NotConfidentAlternativeWins

0.0 0.2 0.4 0.6 0.8 1.0

(b) Predicted Probability (l = 1)
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Sa
m

pl
e 

Pr
op

or
tio

ns

l=1 Samples before Pruning
l=1 Samples after Pruning GivenWinsConfidentAlternative
l=1 Samples after Pruning NotConfidentAlternativeWins

Fig. 4. Probabilities before and after Pruning Confusing Samples

Fan et al. [5] have far more non-vulnerable samples than
vulnerable ones. Further analysis would be focused the impact
of unbalanced datasets on the fraction of Confusing samples,
and the impact of their removal on the model’s performance.

Multi-Class Classification. We analyzed necessary and
sufficient constraints for the existence of Confusing samples
for a binary-classification scenario. To design a complete
methodological approach, we plan to generalize the analysis
to multi-class classification such as CWE-specific classes with
a not-vulnerable class.

VI. ARTIFACT AVAILABILITY STATEMENT

The replication package is available on Zenodo at https:
//doi.org/10.5281/zenodo.14641942.

VII. ACKNOWLEDGEMENTS

This work has been partly supported by the European
Union (EU) under Horizon Europe grant n. 101120393
(Sec4AI4Sec), by the Italian Ministry of University and Re-
search (MUR), under the P.N.R.R. – NextGenerationEU grant
n. PE00000014 (SERICS), and by the Nederlandse Organisatie
voor Wetenschappelijk Onderzoek (NWO) under grant n.
KIC1.VE01.20.004 (HEWSTI).

VIII. CREDIT AUTHOR STATEMENT

Conceptualization YG, FM; Methodology YG, FM; Soft-
ware YG; Validation YG, FM; Formal analysis FM, YG;
Investigation YG; Data Curation YG; Writing - Original Draft
YG; Writing - Review & Editing YG, FM; Visualization
YG; Supervision FM; Project administration FM; Funding
acquisition FM.

6

https://doi.org/10.5281/zenodo.14641942
https://doi.org/10.5281/zenodo.14641942


REFERENCES

[1] C. Northcutt, L. Jiang, and I. Chuang, “Confident learning: Estimating
uncertainty in dataset labels,” Journal of Artificial Intelligence Research,
vol. 70, pp. 1373–1411, 2021.

[2] X.-C. Wen, Y. Chen, C. Gao, H. Zhang, J. M. Zhang, and Q. Liao,
“Vulnerability detection with graph simplification and enhanced graph
representation learning,” in 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE). IEEE, 2023, pp. 2275–2286.

[3] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[4] Y. Li, S. Wang, and T. N. Nguyen, “Vulnerability detection with fine-
grained interpretations,” in Proceedings of the 29th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 292–303.

[5] J. Fan, Y. Li, S. Wang, and T. N. Nguyen, “Ac/c++ code vulnerability
dataset with code changes and cve summaries,” in Proceedings of the
17th International Conference on Mining Software Repositories, 2020,
pp. 508–512.

[6] E. Imgrund, T. Ganz, M. Härterich, L. Pirch, N. Risse, and K. Rieck,
“Broken promises: Measuring confounding effects in learning-based
vulnerability discovery,” in Proceedings of the 16th ACM Workshop on
Artificial Intelligence and Security, 2023, pp. 149–160.

[7] R. Croft, M. A. Babar, and M. M. Kholoosi, “Data quality for software
vulnerability datasets,” in 2023 IEEE/ACM 45th International Confer-
ence on Software Engineering (ICSE). IEEE, 2023, pp. 121–133.

[8] M. Fu and C. Tantithamthavorn, “Linevul: A transformer-based line-
level vulnerability prediction,” in Proceedings of the 19th International
Conference on Mining Software Repositories, 2022, pp. 608–620.

[9] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, and Y. Zhong,
“Vuldeepecker: A deep learning-based system for vulnerability detec-
tion,” arXiv preprint arXiv:1801.01681, 2018.

[10] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, and M. McConley, “Automated vulnerability detection
in source code using deep representation learning,” in 2018 17th
IEEE international conference on machine learning and applications
(ICMLA). IEEE, 2018, pp. 757–762.

[11] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, and Z. Chen, “Sysevr: A
framework for using deep learning to detect software vulnerabilities,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2244–2258, 2021.

[12] S. Chakraborty, R. Krishna, Y. Ding, and B. Ray, “Deep learning
based vulnerability detection: Are we there yet?” IEEE Transactions
on Software Engineering, vol. 48, no. 9, pp. 3280–3296, 2021.

[13] X. Nie, N. Li, K. Wang, S. Wang, X. Luo, and H. Wang, “Understanding
and tackling label errors in deep learning-based vulnerability detection
(experience paper),” in Proceedings of the 32nd ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, 2023, pp. 52–63.

[14] N. Reimers, “Sentence-bert: Sentence embeddings using siamese bert-
networks,” arXiv preprint arXiv:1908.10084, 2019.

7


	Introduction
	Background on Confident Learning
	Identifying Confusing Samples
	Capturing GivenWinsConfidentAlternat samples
	Capturing AlternatNotConfidentYetWins

	Experiments and Results
	Discussion and Future Plans
	Artifact Availability Statement
	Acknowledgements
	CRediT Author Statement
	References

