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What Confident learning is all about

IF dataset not so good — use model to re-label it
- |F Score(x,1) < Confid(Score(x,1)) — label(x,0)
- and so on for 0

BUT

For vulnerabilities, model aren’'t good either...

- Wen et al. ICSE’23 — Best precision < 55%

- Croft et al. ICSE’23 — Wrong labels > 28%



Our Ildea: when in doubt throw them out

- Relabelling is too risky — too many wrong elements
- Drop elements we are not sure — they are confusing the model

Confidence level = weighted average of the predicted vulns

1
> label (k,

Well predicted — PTEd(k':E) >t > 3
Poorly predicted — pred(k, {) < 5

ty = Z pred(k,?) - label(k, 0)

The rest — the one confusing the models



Two possible conditions
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Two possible conditions — confidence of 0s
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And it works....
Running vulnerability dataset with 8K samples (50-50) on a BERT Model

Data kept Precision Recall
Original Dataset 100% 63% 48%
Invert Mislabelled 100% 60% 70%
Remove Mislabelled 72% 59% 7%
Remove Confusing 0 89% 60% 75%
Remove Confusing 1 99% 959% 77%

N\ DROP 1% of datapoints and Recall increases
Without big change on Precision
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